
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 1 Daniel Llamocca

TBB: parallel_for

OBJECTIVES
▪ Learn the basics of Threading Building Blocks (TBB) Library in C++: parallel_for

▪ Execute parallel applications using TBB.

USEFUL INFORMATION
▪ Refer to the Tutorial: Embedded Intel for the source files used in this Tutorial.

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides for the Terasic DE2i-150 Board.

▪ Board Setup: Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.

✓ Refer to the DE2i-150 Quick Start Guide (page 2) for a useful illustration.

ACTIVITIES

FIRST ACTIVITY: ELEMENT-WISE SQUARING OPERATION IN A VECTOR

▪ Given an n-element vector, we want to compute 𝑎(𝑖) ← 𝑎(𝑖) × 𝑎(𝑖) for every element in the vector.

▪ Example: a = [-1.2 2.3 3.6 6.7 0.3 0.35 2.1 0.7 5.1 -1.1]

Result: a = [1.44 5.29 12.96 44.89 0.09 0.1225 4.41 0.49 26.01 1.21]

▪ This s imple example will introduce the concept of the parallel_for template function in TBB. This template function can be

used quickly when the iterations are independent.

Sequential implementation
▪ This is a straightforward sequential implementation as a function:

void SerialApplyFun(float a[], size_t n) {

 for(size_t i=0; i!=n; ++i)

 a[i] = a[i]*a[i];

}

Parallel implementation

▪ TBB lets us specify logical parallelism instead of threads.
✓ Programming directly in terms of threads can be tedious and lead to suboptimal programs (threads are low-level, heavy

constructs close to the hardware). It also forces you to efficiently map logical tasks onto threads.

✓ In contrast, TBB library automatically maps logical parallelism in a way that makes efficient use of processor resources.

▪ The functionality of the SerialApplyFun function can be implemented (with parallelism enabled) via Intel TBB parallel_for.

The iterations are divided up into tasks that are provided to a task scheduler for parallel execution.

✓ Style 1: Using a class.

 The parallel_for template indicates the iteration space (blocked_range: half-open range from 0 to n-1), as well as

the function name and operand to which it applies (ApplyFun(a)):

void ParallelApplyFun(float a[], size_t n) {

 parallel_for(blocked_range<size_t>(0,n), ApplyFun(a));

}

 ApplyFun(a): It applies 𝑎(𝑖) ← 𝑎(𝑖) × 𝑎(𝑖) for i = 0 to n-1. It must be defined as a class in a specific way:

class ApplyFun {

 float *const my_a; // 'private' access (default access level)

public:

 void operator()(const blocked_range<size_t> &r) const {

 float *a = my_a;

 for(size_t i=r.begin(); i!=r.end(); ++i) // you can use 'size_t', long int or int

 a[i] = a[i]*a[i];

 }

 ApplyFun(float a[]) : my_a(a) {} // member initialization in constructor. my_a = a

};

 Because the body object might be copied, its operator() should not modify the body. Otherwise the modification

might or might not become vis ible to the thread that invoked parallel_for, depending upon whether operator() is

acting on the original or a copy. As a reminder of this nuance, parallel_for requires that the body object's operator()

be declared const.

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 2 Daniel Llamocca

✓ Style 2: Using a structure.

 The parallel_for template indicates the iteration space (0 to n-1), and the function name to which it applies: ApplyFun.

However, the function parameters (a in this case) must be provided in a structure called ApplyFun.

void ParallelApplyFun(float a[], size_t n) {

 ApplyFun.a = a;

 parallel_for(blocked_range<size_t>(0,n), ApplyFun);

}

 ApplyFun: It applies 𝑎(𝑖) ← 𝑎(𝑖) × 𝑎(𝑖) for i = 0 to n-1. It must be defined as a structure that contains the function

definition and the operator:

struct ApplyFun {

 float *a;

 void operator()(const blocked_range<size_t> &r) const {

 for(size_t i=r.begin(); i!=r.end(); ++i)

 a[i] = a[i]*a[i];

 }

};

▪ Note that parallel_for(range, body) represents parallel execution of body over each value in the range.

▪ Fig. 1 depicts the sequential and parallel implementation of this operation for n=4. Ideally, all the operations with parallel_for

run in parallel (after an overhead).

▪ blocked_range template class: specification of discrete ranges with enumerable elements.

✓ blocked_range<type>(a,b): It represents a half-open range [a,b) that can be recursively split.

Example: blocked_range<int>(0,5): The range is [0,5) and it includes the numbers 0,1,2,3,4.

✓ blocked_range<type>(a,b, grainsize): It represents a half-open range [a,b) with a grainsize (which is 1 by default).

Example: blocked_range<int>(5,14,2): The range is [0,14) but it only includes the numbers 5, 7, 9, 13.

✓ blocked_range<type> &r: It defines r as a blocked range of ‘type’.

▪ Application file: basic.cpp

✓ In this example, a is a constant vector with n = 10 elements.

✓ The operation 𝑎(𝑖) ← 𝑎(𝑖) × 𝑎(𝑖) is implemented both in serial and parallel form. Note that a function encapsulates the

operation (this is not the only approach).
✓ Note that we use using namespace tbb. This avoids having to include the prefix tbb before each identifier used by the

tbb library (e.g.: parallel_for, blocked_range).

▪ Compile this application:

g++ basic.cpp -ltbb -o basic 

▪ Execute this application:

./basic 

𝑎() ← 𝑎() × 𝑎()

𝑎() ← 𝑎() × 𝑎()

𝑎() ← 𝑎() × 𝑎()

𝑎() ← 𝑎() × 𝑎()

𝑎() ← 𝑎() × 𝑎() 𝑎() ← 𝑎() × 𝑎() 𝑎() ← 𝑎() × 𝑎() 𝑎() ← 𝑎() × 𝑎()

time

sequential implementation

parallel

implementation

Figure 1. Timeline: Sequential vs parallel implementation for the operation applied on a 4-element vector

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 3 Daniel Llamocca

SECOND ACTIVITY: CEILING OPERATOR IN A VECTOR

▪ Given an n-element integer vector, we compute 𝑏(𝑖) ← ⌈
𝑎(𝑖)

2
⌉ for every element, where 𝑎(𝑖) and 𝑏(𝑖) are integer values.

▪ Example: a = [0 3 7 12 18 25 33 42 52 63]

Result: b = [0 2 4 6 9 13 17 21 26 32]

▪ This example will introduce the concept of lambda expressions for the parallel_for template function. Lambda expressions

allow us to implement parallel operations without having to define a class or a structure (unlike in the First Activity).
▪ In order to use lambda expressions, we need the Version 11.0 of the Intel® C++ Compiler. This requires the use of the

modifier -std=c+11 when compiling.

▪ To show a different approach than in the first example, functions are not used here.
▪ Note that we use using namespace std. This avoids having to include the prefix std before each identifier used by the std

library. As a result, we need to use the prefix tbb for parallel_for.

▪ In this example, we will provide two different approaches:

✓ Normal lambda expressions: The iteration space can be customized. Two variations will be shown: local variables
captured by value and captured by reference.

✓ Compact lambda expressions: Very useful as they are short-hand declarations for parallel_for. However, the iteration

space only supports looping is over a consecutive range of integers.

Normal lambda expressions

▪ We will implement the ceiling operator applied to every element in parallel.
✓ Version 1:

tbb::parallel_for(tbb::blocked_range<size_t>(0,n), [=](const tbb::blocked_range<size_t>& r) {

 for(size_t k=r.begin(); k!=r.end(); ++k) // 0 <= k < n

 if (a[k] == 0) b[k] = 0;

 else b[k] = (a[k]-1)/DV + 1; // b[k] = ceil(a[k]/DV)

 }

);

 The parallel_for template indicates the iteration space (0 to n-1), the type of the range index, and the operation itself.

 Note that we need to define the loop operation inside.
 The expression [=] creates a function object. When the local variables (a,b,n) are declared outside the lambda

expression, they are “captured” as fields inside the function object. It specifies that capture is by value. It also means
that the range index r needs the modifier & (we directly specify that it is pointer).

 This means that local variables cannot be modified (passed by value), otherwise the compiler will issue an error.

Note however that we can modify arrays as it is interpreted that we are passing the pointer values.

✓ Version 2 (preferred):
tbb::parallel_for (tbb::blocked_range<size_t>(0,n), [&](const tbb::blocked_range<size_t> r) {

 for(int k=r.begin(); k!=r.end(); ++k) // 0 <= k < n

 if (a[k] == 0) b[k] = 0;

 else b[k] = b[k] = (a[k]-1)/DV + 1; // b[k] = ceil(a[k]/DV) // DV = 2

 }

);

 The parallel_for template indicates the iteration space (0 to n-1), the type of the range index, and the operation itself.

 The operator [&] indicates that the local variables (a,b,n) are captured by reference. It also means that the range

index r does not need any modifier.

Compact lambda expressions
▪ The compact form support only unidimensional iteration spaces of consecutive integers.
▪ There are also two versions: [=] and [&]. As already mentioned, they only specify whether local variables declared outside

the lambda expression are captured as fields inside the function objects either by value ([=]) or by reference ([&]). Note

that the index (k) is just a variable and not a range like in the normal lambda expressions.

▪ We will implement the ceiling operator applied to every element in parallel.

✓ Version 1:
tbb::parallel_for(size_t(0), size_t(n), [=] (size_t k) { // 1 <= k < n

 if (a[k] == 0) b[k] = 0;

 else b[k] = b[k] = (a[k]-1)/DV + 1; // b[k] = ceil(a[k]/DV)

 });

✓ Version 2:
tbb::parallel_for(size_t(0), size_t(n), [&] (size_t k) { // 1 <= k < n

 if (a[k] == 0) b[k] = 0;

 else b[k] = b[k] = (a[k]-1)/DV + 1; // b[k] = ceil(a[k]/DV)

 });

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 4 Daniel Llamocca

▪ Application file: myceil.cpp

✓ In this implementation, the operation 𝑏(𝑖) ← ⌈
𝑎(𝑖)

2
⌉ is implemented in parallel form for both the lambda express ions

(normal, compact).

▪ Compile this application:

g++ -std=c++11 myceil.cpp -ltbb -o myceil 

▪ Execute this application: ./myceil 

THIRD ACTIVITY: ELEMENT-WISE CONSTANT MULTIPLIER

▪ Given an n-element integer vector, we want to compute 𝑎(𝑖) ← 𝑎(𝑖) × for every element in the vector, where each element

𝑎(𝑖) is a real value.
▪ Example: a = [1.2 2.3 3.6 6.7 0.1 0.2 2.1 0.7 5.1 0.3]

Result: a = [2.4 4.6 7.2 13.4 0.2 0.4 4.2 1.4 10.2 0.6]

▪ This straightforward example illustrates four ways to use the lambda expressions for parallel_for:

✓ Normal lambda expression:

 Inside the main function.

 Inside a function:

void ParallelApplyFun (float a[], size_t n) {

 tbb::parallel_for(tbb::blocked_range<int>(0,n), [&](tbb::blocked_range<int> r)

 {

 for (int i=r.begin(); i<r.end(); ++i)

 {

 a[i] = a[i]*2;

 }

 });

}

✓ Compact lambda expression:
 Inside the main function

 Inside a function:

void ParallelApplyFun_c (float a[], size_t n) {

 tbb::parallel_for(size_t(0), n, [&] (size_t i) {

 a[i] = a[i]*2;

 });

}

▪ In order to use lambda expressions, we need the Version 11.0 of the Intel® C++ Compiler. This requires the use of the

modifier -std=c+11 at compilation.

▪ Note that we use using namespace std;. This avoids having to include the prefix std before each identifier used by the

std library. As a result, we need to use the prefix tbb for parallel_for.

▪ Application files: simple.cpp

✓ In this implementation, the operation 𝑎(𝑖) ← 𝑎(𝑖) × is implemented in parallel form for both the lambda expressions
(normal, compact) inside a user-defined function and inside the main function.

▪ Compile this application:

g++ -std=c++11 simple.cpp -ltbb -o simple 

▪ Execute this application:

./simple 

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 5 Daniel Llamocca

FOURTH ACTIVITY: 3-ELEMENT MOVING AVERAGE

▪ Given an n-element integer vector 𝑎, we want to compute the 3-element moving average. If 𝑎(𝑖) is an element of the vector,

the 3-element moving average is given by:

𝑓(𝑖) ←
𝑎(𝑖 −) + 𝑎(𝑖) + 𝑎(𝑖 +)

✓ The moving average is usually a central moving average that can be computed using data equally sp aced on either s ide

of a central value (this needs the number of elements in the window to be odd).

✓ In the formula, 𝑖 = ,… 𝑛 − . When the elements are not available (at the borders), we only use the available elements:

𝑓() ←
𝑎(𝑖) + 𝑎(𝑖 +)

, 𝑓(𝑛 −) ←

𝑎(𝑖 −) + 𝑎(𝑖)

▪ TBB: We use the compact lambda expression for parallel_for here:
 tbb::parallel_for(int(0), int(n), [&] (int k) { // 0 <= k <= n-1
 if (k == 0) g[k] = (a[k] + a[k+1]) /2;

 else if (k == n-1) g[k] = (a[k-1] + a[k]) /2;

 else g[k] = (a[k-1] + a[k] + a[k+1]) /3;

 });

▪ Fig. 2 depicts an example. The original data (102 data points) is plotted as a series of dots. The moving average (3 elements)

smooths short-term fluctuations and highlight longer-term trends.

▪ In order to use lambda expressions, we need the Version 11.0 of the Intel® C++ Compiler. This requires the use of the
modifier -std=c+11 at compilation.

▪ Note that we use using namespace std;. This avoids having to include the prefix std before each identifier used by the

std library. As a result, we need to use the prefix tbb for parallel_for.

▪ Application files: mov_avg.cpp

✓ Here, the 3-element moving average is implemented both in serial and parallel (compact lambda expression) forms.

▪ Compile this application: g++ -std=c++11 mov_avg.cpp -ltbb -o mov_avg 

▪ Execute this application: ./mov_avg <# of elements in vector> 

✓ Example: ./mov_avg 10 

▪ Table I lists the computation times for different s izes. There is improvement in processing time for datasets of large size 𝑛.

A main reason for this is the relative s implicity of the computation applied to each element.

TABLE I. COMPUTATION TIMES (US) FOR DIFFERENT DATASET SIZES (𝑛) FOR THE 3-ELEMENT MOVING AVERAGE. DELL INSPIRON

n
Processing Time (us)

n
Processing Time (us)

Sequential TBB Sequential TBB

10 1 499 100,000 3124 1991

50 3 734 500,000 9965 6851

100 3 779 1,000,000 17262 13822

1,000 19 818 2,000,000 34520 27665

10,000 235 1014 5,000,000 84136 66454

50,000 1557 1380 10,000,000 165654 124882

Figure 2. Three-element moving average for a 102-point dataset.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 6 Daniel Llamocca

FIFTH ACTIVITY: VECTOR OPERATIONS

▪ We perform element-wise add and multiply for two n-element vectors with elements 𝑎(𝑖) and 𝑏(𝑖).

𝑐(𝑖) ← 𝑎(𝑖) + 𝑏(𝑖)
𝑑(𝑖) ← 𝑎(𝑖) × 𝑏(𝑖)

▪ We use the compact lambda expression here. 3 approaches:

✓ Element-wise operations defined inside the parallel_for inside the main function.
tbb::parallel_for(int(0), int(n), [&] (int k) { // 0 <= k <= n-1. [0,n): half-open range

 c[k] = a[k] * b[k];

 d[k] = a[k] + b[k];

 });

✓ Element-wise operations inside the parallel_for are defined in a function.

void point_op (float x, float y, float *z, float *w)

{

 z[0] = x*y;

 w[0] = x+y;

}

tbb::parallel_for(int(0), int(n), [&] (int k) { // 0 <= k <= n-1

 point_op(a[k], b[k], &c[k], &d[k]);

 });

✓ All element-wise operations are defined in a function.
Parallel_point_op(a,b,c,d,n);

void Parallel_point_op (float *a, float *b, float *c, float *d, int n) {

 tbb::parallel_for(int(0), int(n), [&] (int k) { // 0 <= k <= n-1

 point_op(a[k], b[k], &c[k], &d[k]); // Approach 1

 // c[k] = a[k] * b[k]; d[k] = a[k] + b[k]; // Approach 2

 });

}

▪ In order to use lambda expressions, we need the Version 11.0 of the Intel® C++ Compiler. This requires the use of the
modifier -std=c+11 at compilation.

▪ Note that we use using namespace std;. This avoids having to include the prefix std before each identifier used by the

std library. As a result, we need to use the prefix tbb for parallel_for.

▪ Application files: vector_op.cpp

✓ In this implementation, the 3-element moving average is implemented both in serial and parallel (compact lambda
expression) forms.

▪ Compile this application:

g++ -std=c++11 vector_op.cpp -ltbb -o vector_op 

▪ Execute this application:

./vector_op 

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 7 Daniel Llamocca

SIXTH ACTIVITY: GRAYSCALE MORPHOLOGICAL OPERATIONS (DILATION, EROSION)

GRAYSCALE IMAGE MORPHOLOGY
▪ Set of image processing operations that applies a structuring element to an input grayscale image, generating an output

grayscale image of the same size. The value of an output pixel is based on a comparison of the corresponding pixel in the

input image with its neighbors. The neighborhood is also called the structuring element. By choosing the size and shape of
the structuring element, we can construct a morphological operation that is sensitive to specific shapes in the input image.

The morphological operation is applied to each input pixel independently. Among the applications, we can list contrast
enhancement, texture description, edge detection, and thresholding.

▪ Common morphological operations: dilation, erosion, opening, closing, smoothing, edge detection, top -hat.

▪ Structuring element (SE): It defines the neighborhood over which we apply a morphological operation to the input pixel

of interest (which is located at the origin of the SE). We consider cases where the origin of the SE is easily identifiable. The
structuring element can have any shape and size. Fig. 4 depicts several SEs of different shapes, where the center of the

structuring element (circled in red) is the input pixel over which we want to apply a morphological operation.
✓ A SE is like a ‘mask’ defined by a matrix, whose values are ‘0’ or ‘1’. A value of ‘1’ indicates that the pixel in that location

belongs to the neighborhood and as such it is considered in the computation of the morphological operation. A ‘0’

indicates that the pixel in that local is not part of the neighborhood.

▪ Dilation: The grayscale dilation of an image involves assigning to each pixel, the maximum value found over the
neighborhood of the structuring element. The dilated value of a pixel I(i,j) is the maximum value of the image in the

neighborhood defined by the SE when its origin is at I(i,j).

▪ Erosion: The grayscale erosion of an image involves assigning to each pixel, the minimum value found over the
neighborhood of the structuring element. The eroded value of a pixel I(i,j) is the minimum value of the image in the

neighborhood defined by the SE when its origin is at I(i,j).

9 8 5 3 0 3 0 4 7 6

7 6 4 2 0 3 1 3 2 9

5 3 2 1 1 5 1 0 2 6

2 2 3 0 5 9 3 1 1 4

1 3 3 2 8 6 5 3 1 2

0 7 2 3 4 ? 6 4 5 1

0 9 3 3 6 3 5 1 7 2

0 8 4 5 9 8 9 7 9 3

7 1 3 4 2 0 8 5 6 0

0 3 0 2 0 0 4 6 4 0

MORPHOLOGICAL

OPERATION

Structuring
element9 8 5 3 0 3 0 4 7 6

7 6 4 2 0 3 1 3 2 9

5 3 2 1 1 5 1 0 2 6

2 2 3 0 5 9 3 1 1 4

1 3 3 2 8 6 5 3 1 2

0 7 2 3 4 7 6 4 5 1

0 9 3 3 6 3 5 1 7 2

0 8 4 5 9 8 9 7 9 3

7 1 3 4 2 0 8 5 6 0

0 3 0 2 0 0 4 6 4 0

INPUT IMAGE OUTPUT IMAGE

Figure 3. Structured Element (SE) applied to an input pixel (the circled one). The SE is centered around this

input pixel. The operation applied depends on the specific morphological operation.

Figure 4. Three different structured elements (SEs). They define the neighborhood of the input pixel over which

we apply a specific operation.

7 6 8

5 2 5

2 3 5

3 1 2

6 8 5

6 13 7

8 27 12

49 31 17

7 9 3

0 5 6

6 3 9

7 1 4

7 6 8

5 2 5

2 3 5

3 1 2

6 8 5

6 13 7

8 27 12

49 31 17

7 9 3

0 5 6

6 3 9

7 1 4

7 6 8

5 2 5

2 3 5

3 1 2

6 8 5

6 13 7

8 27 12

49 31 17

7 9 3

0 5 6

6 3 9

7 1 4

Structuring element:
5x5 square

Structuring elements:
Disk with radius 1

Structuring element:
Disk with radius 2

1 1

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1 1

1 1 1

1 1 1 1 1 1

1

1

0 0

0 1

1 0 0

1 1 0

0 1

0 0

1 1

1 1 0

1 0 0

1 1 1

0 0

00

(a) (b) (c)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 8 Daniel Llamocca

▪ Fig. 5 depicts the operation of dilation and erosion applied to a grayscale image with the given Structural Element. Note how

dilation brighten pixels to the boundaries of bright areas, while erosion darkens pixels from the boundary of bright areas.

▪ TBB: We use the compact lambda expression for parallel_for here. The dilation/erosion operation is implemented as a function
im_morph_tbb (MORPHO_args morpho_data, size_t t):

int im_morph_tbb (MORPHO_args morpho_data, size_t t) { // t = 1: Dilation. t = 2: Erosion

 int sX, sY, kX, kY;

 int *I, *O, *K; // these are provided as linear arrays

 // morpho_data.I: input image matrix represented as a 1D vector (raster-scan)

 I = morpho_data.I; O = morpho_data.O; sX = morpho_data.SX; sY = morpho_data.SY;

 K = morpho_data.K; kX = morpho_data.KX; kY = morpho_data.KY;

 if (!I || !O || !K) return 0;

 if (sX <= 0 || sY <= 0 || kX <= 0 || kY <= 0) return 0;

 if (t == 1) { // DILATION

 tbb::parallel_for (int(0), int(sY), [&] (int i) { // 0 <= i <= SY-1

 tbb::parallel_for (int(0), int(sX), [&] (int j) { // 0 <= j <= SX-1

 O[sX*i + j] = maxI(morpho_data,i,j); }); // Fun(i,j) = maxI(i,j)

 });

 }

 else { // t==2: EROSION

 tbb::parallel_for (int(0), int(sY), [&] (int i) { // 0 <= i <= SY-1

 tbb::parallel_for (int(0), int(sX), [&] (int j) { // 0 <= j <= SX-1

 O[sX*i + j] = minI(morpho_data,i,j); }); // Fun(i,j) = minI(i,j)

 });

 }

 return 1;

}

✓ Note that we are using nested parallel_for. We could have used one parallel_for (s ince the input image is specified as a

linear array), but we prefer to illustrate the usage of nested parallel_for.

Figure 5. Dilation and erosion applied to a grayscale input image. The Structural Element (SE) is indicated in the figure.

0 0

0 1

1 0 0

1 1 0

0 1

0 0

1 1

1 1 0

1 0 0

1 1 1

Dilation

Erosion

Input Image

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 9 Daniel Llamocca

 The function Fun applied to every element of the array is Fun(I(i,j)). The operation at every index is independent

from each other. To avoid race conditions, the function Fun(I(i,j)) is implemented as a function in C++ for both

dilation (Fun(I(i,j)) = maxI(I(I,j))) and erosion (Fun(I(i,j)) = minI(I(I,j))).

int minI (MORPHO_args morpho_data, int i, int j) {

 int min, m, n, kCX, kCY, kX, kY, sX, sY, i_I, j_I;

 int *I, *K;

 I = morpho_data.I; sX = morpho_data.SX; sY = morpho_data.SY;

 K = morpho_data.K; kX = morpho_data.KX; kY = morpho_data.KY;

 kCX = kX / 2; kCY = kY / 2; // find center position of kernel (half of kernel size, flooring)

 min = I[sX*i + j];

 for (m = 0; m < kY; m++) // SE: rows

 for (n = 0; n < kX; n++) { // SE: columns

 if (K[kX*m + n] == 1) { // out-of-bounds input samples are not considered

 i_I = i + m-kCY; j_I = j + n-kCX;

 if (i_I >= 0 && i_I < sY && j_I >= 0 && j_I < sX)

 if (I[sX*i_I + j_I] <= min) min = I [sX*i_I + j_I];

 }

 }

 return min;

}

int maxI (MORPHO_args morpho_data, int i, int j) {

 int max, m, n, kCX, kCY, kX, kY, sX, sY, i_I, j_I;

 int *I, *K;

 I = morpho_data.I; sX = morpho_data.SX; sY = morpho_data.SY;

 K = morpho_data.K; kX = morpho_data.KX; kY = morpho_data.KY;

 kCX = kX / 2; kCY = kY / 2; // find center position of kernel (half of kernel size, flooring)

 max = 0;

 for (m = 0; m < kY; m++) // SE: rows

 for (n = 0; n < kX; n++) { // SE: columns

 if (K[kX*m + n] == 1) { // out-of-bounds input samples are not considered

 i_I = i + m-kCY; j_I = j + n-kCX;

 if (i_I >= 0 && i_I < sY && j_I >= 0 && j_I < sX)

 if (I[sX*i_I + j_I] >= max) max = I [sX*i_I + j_I];

 }

 }

 return max;

}

▪ Application files: morpho.cpp, morpho_fun.cpp, morpho_fun.h, Makefile

✓ Code Structure:

 Determination of whether to apply dilation or erosion. Initialization of structural element.
 Initialization of input image I by reading from binary file (uchip.bif).

 Sequential computation (using a function) of grayscale dilation/erosion.

 TBB Computation (using compact lambda expression for parallel_for) of grayscale dilation/erosion

 Store result (output matrix) on a binary file (uchip_d.bof for dilation) and (uchip_e.bof for erosion).

✓ We measure the processing time (us) of both the serial and parallel implementation using gettimeofday().

▪ Compile this application: make all 

▪ Execute this application: ./morpho <modifier> 

✓ Two execution possibilities:
 ./morpho 1  (dilation): Output binary file: uchip_d.bof

 ./morpho 2  (erosion): Output binary file: uchip_e.bof

✓ You can use MATLAB® to verify that your results (output images) are correct.
 Files: morpho.m, uchip.jpg

▪ Table I lists the computation times. There is improvement in processing time when using TBB .

TABLE I. COMPUTATION TIME (US) OF DILATION/EROSION. DELL INSPIRON

Computation Time (us)

Sequential TBB

Dilation 46003 31733

Erosion 46248 29275

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation 10 Daniel Llamocca

EXERCISES
▪ Given an n-element vector, compute the 7-element moving average using parallel_for to run the computations in parallel.

▪ Perform grayscale morphological opening (erosion + dilation) and closing (dilation + erosion) on an image.

	Objectives
	Useful Information
	Activities
	Sixth Activity: Grayscale Morphological Operations (dilation, erosion)

	Exercises

